
Ghostrider Mining
Algorithm Whitepaper

by Tri Nguyen
edited by Paul Mills

V1.1

Objective: To create an alternative mining
algorithm highly resistant to ASICs & FPGAs

Technology: GhostRider is a combination of known mining
technologies and methodologies from x16r (Raven) and CryptoNight
(Monero).

X16r provides a randomness to an existing hash chaining
methodology for mining, but lacks a memory requirement allowing
ASICs to potentially gain significant advantages over GPUs.

CryptoNight, requires CPU/GPU memory making it harder for ASICs
to gain a significant advantage, while lacking the randomness that
x16r has. Recently, the Monero team committed to combating ASICs
by forking CryptoNight to add more variables to its memory
requirements and hashing methodology. However, each fork’s
hashing method remains static.

Combining value of the randomness that the x16r
algorithm provides in battling the curve of ASIC efficiency
with the impact of a high memory requirement of
Cryptonight - the concept of GhostRider was born.

Methodology

We mixed both methodologies together by randomly selecting 15 different
core base algorithms and mixing them with 3 different random variants of
Cryptonight hashing. These algorithms are divided into 3 groups of 5 random
order core algorithms followed by 1 random order CN variant. All 15 order core
algorithms are random but not no single algorithm being repeated in the same
chain. The same goes for the order of CN derivaties.

Random ordering algorithm: To archive pre-deterministic ordering, the
algorithm uses previous block hash nibbles in order from right to left to determine
which algorithm to hash next for the 15 core algos. Each nibble is a single hex
digit(0-F) and there are 64 nibbles in a block hash.
If a nibble hex is F (15 in decimal) then it wraps around as 0. See hex number to
algo map below. If a hex digit has been seen in the previous nibbles, it moves to
next nibble in the hash. The process is repeated until all 15 unique hexes are
selected. Similarly, CN variant ordering is determined by hex digit and _modified_.

Hex to algo mapping

0 or F - Blake 1 - Bmw 2 - Groestl 3 - Jh 4 - Keccak 5 - Skein
6 - Luffa 7 - Cubehash 8 - Shavite 9 - Simd A - Echo B -

Jamsi C - Fugue D - Shabal E - Whirlpool F - Sha512

Example
Given the previous block hash is:

0000135e13882a45caa301fc03429e416e7ce8d8edebdffe495ab337f9c98582

Going from right to left we have:

2 ► Groeslt, 8 ► Shavite, 5 ► Skein, 8 ►(skip), 9 ► Simd, c ► Fugue, 9
►(skip) f ► Blake, 7 ► Cubehash, 3 ► Jh, 3 ►(skip), b ► jamsi, a ► Echo,
5 ►(skip), 9 ►(skip) 4 ► Keccak, e ► whirlpool, f ►(skip), f ►(skip), d ►
Shabal, b ►(skip), e ►(skip) d ►(skip), e ►(skip), 8 ►(skip), d ►(skip), 8
►(skip), e ►(skip), c ►(skip), 7 ►(skip), e ►(skip) 6 ► luffa, 1 ► Bmw.

The 15 algorithms and the order hash is:

Groeslt►Shavite►Skein►Simd►Fugue►Blake►Cubehash►J
h►jamsi►Echo►Keccak►whirlpool►Shabal►Luffa►Bmw

Now similarly for CN variants, we go from right to left of previous block hash but
this time we hex mod 3 + 2 so this is what we get:

2-CNv4, 8(skip), 5(skip), 8(skip), 9-CNv2,c-(skip), 9(skip), f(skip), 7-CNv3

Now we have the CN variants ordering as follows:

CNv4 ► CNv2 ► CNv3

Then putting algo ordering and CN ordering in 3 groups with each group
containing 5 algorithms and 1 CN variant we get:

Groeslt►Shavite►Skein►Simd►Fugue►CNv4►Blake►Cubehash►
Jh►jamsi►Echo►CNv2►Keccak►whirlpool►Shabal►Luffa►Bmw

